
MOHANADEVI.R,

ASSISTANT PROFESSOR,

DEPARTMENT OF COMPUTER APPLICATIONS,

SWAMY ABEDHANANDHA EDUCATIONAL TRUST,WANDIWASH

1

 Section:1 Procedural versus object oriented programming

 Section:2 Key point

 Section:3 Limitations of procedural programming

 Section:4 Object Oriented Programming Terminology

 Section:5 Classes and Objects

 Section:6 More Object Terms

 Section:7 Creating a Class

 Section:8 Access Specifiers

 Section:9 Member Function

 Section:10 Constructor and Destructor

2

 Procedural programming focuses on the

process/actions that occur in a program.

The program starts at the beginning, does

something, and ends.

 Object-Oriented programming is based on

the data and the functions that operate on it.

Objects are instances of abstract data types

that represent the data and its functions

3

 An object or class contains the data and the

functions that operate on that data. Objects

are similar to structs but contain functions,

as well.

4

• If the data structures change, many
functions must also be changed

• Programs that are based on complex function
hierarchies are:
– difficult to understand and maintain

– difficult to modify and extend

– easy to break

5

 class: like a struct (allows bundling of related

variables), but variables and functions in the

class can have different properties than in a

struct

 object: an instance of a class, in the same

way that a variable can be an instance of a

struct.

6

 A Class is like a blueprint and objects are

like houses built from the blueprint.

7

 attributes: members of a class.

 methods or behaviors: member functions of a

class.

8

 Data hiding: restricting access to certain
members of an object.

 Public interface: members of an object that
are available outside of the object. This
allows the object to provide access to some
data and functions without sharing its
internal details and design, and provides
some protection from data corruption.

9

 Objects are created from a class

 Format:
class ClassName

{

declaration;

declaration;

};

10

11

 Used to control access to members of the
class

 public: can be accessed by functions outside
of the class

 private: can only be called by or accessed by
functions that are members of the class

 In the example on the next slide, note that
the functions are prototypes only (so far).

12

13

14

Private Members

Public Members

 Can be listed in any order in a class

 Can appear multiple times in a class

 If not specified, the default is private

15

 const appearing after the parentheses in a

member function declaration specifies that

the function will not change any data in the
calling object.

16

• When defining a member function:
– Put prototype in class declaration

– Define function using class name and scope
resolution operator (::)

int Rectangle::setWidth(double w)

{

width = w;

}

17

 Functions that are not part of a class, that is,

do not have the Class::name notation, are

global. This is what we have done up to this

point.

18

 Mutator: a member function that stores a

value in a private member variable, or

changes its value in some way

 Accessor: function that retrieves a value from

a private member variable. Accessors do not

change an object's data, so they should be

marked const.

19

 An object is an instance of a class

 Defined like structure variables:
Rectangle r;

 Access members using dot operator:
r.setWidth(5.2);

cout << r.getWidth();

 Compiler error if you attempt to access a
private member using dot operator

20

 Some data must be stored as an attribute.

 Other data should be computed. If we stored

“area” as a field, its value would have to

change whenever we changed length or

width.

 In a class about a “person,” store birth date

and compute age.

21

 Can define a pointer to an object:
Rectangle *rPtr;

 Can access public members via pointer:
rPtr = &otherRectangle;

rPtr->setLength(12.5);

cout << rPtr->getLength() << endl;

22

Rectangle *r1;

r1 = new Rectangle();

 This allocates a rectangle and returns a

pointer to it. Then:

r1->setWidth(12.4);

23

 Making data members private provides data
protection

 Data can be accessed only through public
functions

 Public functions define the class’s public
interface

24

25

Code outside the class must use the class's

public member functions to interact with

the object.

 Place class declaration in a header file that
serves as the class specification file. Name
the file ClassName.h, for example,
Rectangle.h

 Place member function definitions in
ClassName.cpp, for example, Rectangle.cpp
File should #include the class specification
file

 Programs that use the class must #include
the class specification file, and be compiled
and linked with the member function
definitions

26

 Member functions can be defined
◦ inline: in class declaration

◦ after the class declaration

 Inline appropriate for short function bodies:
int getWidth() const

{ return width; }

27

 Regular functions – when called, compiler

stores return address of call, allocates

memory for local variables, etc.

 Code for an inline function is copied into

program in place of call – larger executable

program, but no function call overhead,

hence faster execution

28

 Member function that is automatically called
when an object is created

 Purpose is to construct an object and do
initialization if necessary

 Constructor function name is class name

 Has no return type specified

 (What is the real return type?)

29

 A default constructor is a constructor that
takes no arguments.

 If you write a class with no constructor at
all, C++ will write a default constructor for
you, one that does nothing.

 A simple instantiation of a class (with no
arguments) calls the default constructor:

Rectangle r;

30

 To create a constructor that takes arguments:

◦ indicate parameters in prototype:

Rectangle(double, double);

◦ Use parameters in the definition:

Rectangle::Rectangle(double w, double len)

{

width = w;

length = len;

}

31

 You can pass arguments to the constructor
when you create an object:

Rectangle r(10, 5);

32

• If all of a constructor's parameters have
default arguments, then it is a default
constructor. For example:

Rectangle(double = 0, double = 0);

• Creating an object and passing no
arguments will cause this constructor to
execute:

Rectangle r;

33

 When all of a class's constructors require

arguments, then the class has NO default

constructor

 When this is the case, you must pass the

required arguments to the constructor when

creating an object

34

 Member function automatically called when
an object is destroyed

 Destructor name is ~classname, e.g.,
~Rectangle

 Has no return type; takes no arguments
 Only one destructor per class, i.e., it cannot

be overloaded
 If constructor allocates dynamic memory,

destructor should release it

35

 When an object is dynamically allocated with
the new operator, its constructor executes:

Rectangle *r = new Rectangle(10,

20);

 When the object is destroyed, its destructor
executes:

delete r;

36

 A class can have more than one constructor

Overloaded constructors in a class must have

different parameter lists:

Rectangle();

Rectangle(double);

Rectangle(double, double);

37

 Do not provide more than one default

constructor for a class: one that takes no

arguments and one that has default

arguments for all parameters

Square();

Square(int = 0); // will not compile

 Since a destructor takes no arguments,

there can only be one destructor for a class

38

• Non-constructor member functions can also

be overloaded:
void setCost(double);

void setCost(char *);

• Must have unique parameter lists as for

constructors

39

 A private member function can only be called
by another member function

 It is used for internal processing by the class,
not for use outside of the class

 If you wrote a class that had a public sort
function and needed a function to swap two
elements, you’d make that private

40

 Objects can be the elements of an array:

Rectangle rooms[8];

 Default constructor for object is used when
array is defined

41

Must use initializer list to invoke constructor that
takes arguments:

Rectangle rArray[3]={Rectangle(2.1,3.2),

Rectangle(4.1, 9.9),

Rectangle(11.2, 31.4)};

42

 It isn't necessary to call the same constructor

for each object in an array:

Rectangle

rArray[3]={Rectangle(2.1,3.2),

Rectangle(),

Rectangle(11.2, 31.4)};

43

 Objects in an array are referenced using
subscripts

 Member functions are referenced using dot
notation:

rArray[1].setWidth(11.3);

cout << rArray[1].getArea();

44

 UML stands for Unified Modeling Language.

 The UML provides a set of standard diagrams

for graphically depicting object-oriented

systems.

45

46

• A UML diagram for a class has three

main sections.

47

class Rectangle

{

private:

double width;

double length;

public:

bool setWidth(double);

bool setLength(double);

double getWidth() const;

double getLength() const;

double getArea() const;

};

48

• In UML you indicate a private

member with a minus (-) and a

public member with a plus(+).

These member variables are

private.

These member functions are

public.

49

• To indicate the data type of a member

variable, place a colon followed by the

name of the data type after the name of

the variable.

- width : double

- length : double

 To indicate the data type of a function’s

parameter variable, place a colon followed by

the name of the data type after the name of

the variable.

50

+setWidth(w : double)

51

• To indicate the data type of a

function’s return value, place a colon

followed by the name of the data type

after the function’s parameter list.

+ setWidth(w : double) : void

52

53

Constructors

Destructor

No return type listed for

constructors or destructors

